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THE EXPECTED HEIGHT OF PATHS FOR SEVERAL
NOTIONS OF HEIGHT

WOLFGANG PANNY and HELMUT PRODINGER

Abstract

In this paper lattice paths with two directions are considered. Several notions of height are
introduced, namely the maximal deviation, the maximal span and the onesided height. Assuming all
paths of length » to be equally likely, exact enumeration formulae for the expected height and their
asymptotic equivalents are derived .

1. Introduction

This paper deals with the expected height of lattice paths for several notions
of height.

A path of length n is a sequence of integers ay, ay, ..., a, with |a;,—a;|=1,
0=i<n.

Let us just review some previously known results:

If all paths ay, ay, ..., 4z, With a;=a,,=0, ;=0 are assumed to be equally
likely and the height of the path is defined to be max {4;|0=i=2n}, then the expec-
ted height is

(1.1 Vﬁ—%+0(n—1/2“) for ¢=0 and n-o.

This result is due to De Bruijn, Knuth and Rice [2] and was stated not in terms
of paths but in terms of planted plane trees. Such a path can alsoc be copsidered as
a Dyckword of length 2n, if the i-th letter of the word is an opening (closing) bracket
for g;—a;_,=1 (—1).

A word u is said to be a prefix of a word w iff there exists a word v with uv=w.
So a prefix of a Dyckword can be considered as a path &, ay, ..., @, with @,=0
and ¢;=0. Assuming all such paths to be equally likely and defining the height
again by max {a;|0=i=n}, the expected height is

(1.2) (10g2)V§Er7—-—§—+0(n‘1/2) for 7 -oo.

This result is due to Kemp [6].

Regarding paths where a third direction is allowed (a;+;—a;=0), see [10]
and [9].

For a fairly exhaustive list of references of related problems see [7].
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In Section 2 we consider paths Qg .., @, With g,=0. The notion of height
is defined by max {ia;][()ﬁ:ﬂn} and is called maximal deviation. This class of paths
corresponds to the prefixes of the Dycklanguage, except for the condition a,=0,
which need not be fulfilled now. We prove that the expected maximal deviation is
given by

(1.3) %—%—I—O(n‘l/z“) for ¢=0 and n -,

Though the result resembles the previous ones, it cannot be concluded from
them as a corollary; to handle the problem we had to use a new technique: Unlike
in the former problems, we had not to approximate cone single binomial coefficient
by the exponential function but a sum of binomial coefficients by the error function.
Thus the Mellin transform. of the error function and the inversion formula of the
Mellin transform come into play.

In Section 3 the same family of paths is considered, but the height is now
max {g;—a; | 0=i,j=n}, called maximal span. We prove that the expected maximal
span is given by

(1.9 1/ 214002 for n-co.

Though the explicit enumeration formulae are even more complicated than in Sec-
tion 2, the derivation of the asymptotic formula (1.4) is (due to lucky circumstances)
quite elementary.
© We would like to mention that the maximal span preserves a way to give a
meaninglul notion of height not only for Dyckwords of prefixes or Dyckwords but
for all words over a two-letter-alphabet!

In Section 4 we consider paths ay, aq, ..., g3, With @y=a,;, =0 and the one-
sided height defined by max {g;|0=i=2n}. We prove that the expected onesided
height is given by

(1.5) : l/mz ——+0(n‘1/2) for n oo,

Again the derivation of the asymptotic formula is — in a certain sense — elemen-
tary. The following interpretation can be given: Suppose there are two players 4
and B each one having n cards out of the set {1, ..., 2n}. 4 always leads a card and
B follows. A player makes a trick whenever his number is the greater one. The in-
teresting parameter is the number of tricks that player A can make, if B plays his
optimal strategy. The partitioning of the cards can be seen as a path by defining
a,=0 and a;—a;_;=1 (—1) iff player B (4) has the card i. For example, 4 has
cards 2, 4, 5, 7 means the path 0, 1, 0, 1, 0, —1, 0, —1, 0. It is not hard to see that
the number of tricks that player 4 can make is just the onesided height of the corre-
sponding path!

Section 3 is devoted to some concluding remarks.

In the following sections the terminus path is used according to the introduc-
tion.

We would like to point out that one notation may have different meanings in
different sections.
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2. The expected maximal deviation

Let y, ,(z) be the generating function where the coefficient of z" gives the
number of paths from (0, 0) to (n, /) with maximal deviation =h.

T
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Fig. 1

THEOREM 2.1. With z=v/(1+v%) we Have

1-|—v l—-vs':"""l"“
@D Vi1 (@) = e [

Proor. Regarding the last step of the path we find the following system of
linear recurrences for the generating functions 1, , (|/|=h) which can be expressed
in matrix form:

iI—-z | %,—h(z) 0

-z 1} -z ‘ph,—q+1(z) :

. : 0

2.2) -z 1 —z Y0 (2) =1
“ ) . 0

—z 1 -z .

~z 1] Y@ 0

Compare [10], where a similar system is used.
Using Cramer’s rule we get

2Ma,_1(2) ay-1-1(2)
2.3 z
23 Vi (2) = e

where a;(z) denotes the determinant of the matrix in (2.2) with 7+1 rows. From

[6], [9], [10] we know
(2.4) ‘ a,(z) =

>

l_b"H—l

1;2 T

where the substitution z= v/(l +v?) is used. Inserting (2.4) in (2.3) we get the desired
result. 0O
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Let ¥, (z):| IZ ¥.1(2) be the generating function of the number ¢, , of all
1=h
paths with maximal deviation =A.

TUEOREM 2.2.

_ () (e
(2.5 ¥i(2) = M=o (1 o5
Proor.

V(2) = Y o(2)+2 15%;. Yn,1(2).

Using Theorem 2.1 we get the result by an elementary computation. [

THEOREM 2.3.

n
s =223 : h[[[n—(k-ri!)]—zl(h-i-l)—l +
== _2

A=0 0=
(2.6)
n
+ ln—(h+2)‘-2/1(h+1)—l
2

Proor. Using Cauchy’s integral formula we have

1 ‘(7,4-) dz —1_(/0|+) dv(l+'ug}"(l+v)(l-—-?)ﬁ+l)2

T @ = "L (L—p) (1 + 020 9)

@7 Cnt = z 2mi

where the substitution z=v/(1+v%) was used. Hence ¢, is the coefficient of +" in

I+ (1 +ov) (1 — P +1)?
A=)+

Expanding the denominator we get

(2.8)

1 _ 2 2511 prAG+1) 1
A=)+ — £S5 )

The result follows now by some elementary manipulations. [
As an alternative representation one obtains in a similar way:

THEOREM 2.4. With the abbreviation

k (n
(2.9) n=2 3 (- D [B[n, [";(;‘ii)]—z(h+1)]+

+B[n, [f———(—;-l-z—)]—/l(h+l))]. O
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A further representation for ¢, , can be obtained from (2.8) by partial fraction
expansion. :

THEOREM 2.5.
. 2 o ..[ 2141 ( 2141 )
(2.10) Cnn = T T 0§‘2§h( Dfcos AT n|ctg IGED z]. O
COROLLARY 2.6. Forn=h we have
2I+1 2[+1
i —1) "[————-— (— =h+1.
(2.11) nélzéh( ) cos PTCET)) n|ctg 0D i1 + |

Since the total of paths of length » is 2", we immediately obtain the following
corollary:
COROLLARY 2.7. With d,,, denoting the number of paths of length n and maxi-

mal deviation >h, we have
n

dyn=22 2> [Jr—(!1+2)]—21(h+1)—l +
2

A=00=I=h

(2.12)
n

+||n—(h+2)|-2Ah+ 1)1
[ 2 l o

Using Abel’s summation formula, we get the following exact expression for
D,, the expected maximal deviation of a path of length ».

THEOREM 2.8.
n
D,=2""2 > > I’ra—(!:+?.)]—2,1(h+1)—l +
h=0 A=00=I=h _2_
(2.13)

+(ln—(§+2)]izx(h+1)—z) .

The remainder of this section is devoted to the study of the asymptotic behaviour
of D,. For the sake of brevity we confine ourselves to the case of even ».
As a first step ‘we have to approximate sums of binomial coefficients of the
following kind (0=a=b):
2n
2.14) Sppi=2""0 X (n+k)'

a=k=b
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THEOREM, 2.9. Let &>0. Assume O0=a=b=0@n"2**) and k=0 @2+,
Furthermore let erfc(x) be the well-known complement of the error function:

oo

erfc (x) = f e " dr.
Then <

N S, = lerfc[ Vﬁ ]—erfc

' k += ]
—erfc 2 -i—l ke__ (1+0@n1+9),
1

Vn J Vo 2 Yan®

(14 0(n1+9),

@15 (D) Se.= erfc(

k"_ k3
iy Sy = erfc erfc ——I—M (l-I—O(n‘”‘))
7)-2
Proor. For the sake of brev1ty we only want to stress the main ideas of the
proof. Following the presentation in [5, pp 179—182] one can distinguish three
components of the error committed in the above approximations. The first compo-
nent is effected by the approximation

The second component is due to the approximation of the middle term by Stirling’s
formula
22 (2"] ~ L
n Vnn

For this two error components it follows easily from the estimates given in [5] that
we have

2n 1
_on s —k2/n —14¢ — 1/2)+e
(i) = e @ r0G) for k= 0@amr,

The third component is caused by replacing summation over a=k=» by integra-
s 1 : . .
tion within the bounds a——= and b+i. Regarding part (i) of the above

2 2
theorem it suffices to consider the approximation

- L @DVE
e R e
T g 7 —

V%

Estimating the difference between these two terms by appropriate chosen triangles

THE EXPECTED HEIGHT OF PATHS 125

we are led to (i). As for part (ii) and (iii) 4 similar reasoning can be used to derive
the indicated correction terms and to estimate the order of the error. [ :

The correction terms in the formulae (ii) and (iii) allow us to lower the order
of the error from O(n~Y2+%) to O(n~'*%).

Taeorem 2.10. Let o and T be the arithmetical functions defined by

(2.16) omy= > 1, wm= 3 L
m=0@A+1)(H+1), m= (4).+3)(h+1)
A,h=0 A, h=0
Then
Dy =23 [(a(m)—r(m))erfc{ : }’—]] (L+ 0@+ +
m= n
.17 :
3 (o (m) — (m)) me=] (140 (n=1+9)).
!/nns =1
Proor. Starting from (2.13), considering the cases h even or odd separately
. 2n ) ( 2n
and regarding that {, _,i= n+i)> we have
2n
Dy, = 2722 3 24n+ h4+24+41(h+ D+21 |+
h2=0 0=5i=h 5
heven
2n
+27¥2 3 > 2 h-3+4A(R-F D421 |+
@.18) - e (Al
hodd
2n 2n
Flat h+-14+44(h+ 1) |+ |n4+ 3843 +4A(R+ D) |
2 2

Now we approximate the last two terms in (2.8) by (ii) and (iii) of Theorem 2.9,
respectively, and the remaining sums by (i} and obtain:

D=2 2 [erfc[w)_erfc (w]] (1 +'0(,,—1+a))+

=0 2¥n 2Vn
2 e+ 14+41(k+ 1) [—[k+1+4,1(k+1)]21
— exp -
V27 wizo [ V2n n

_ 3e+3+4A(k+-1) —[3k+3+4i(k+ DP =g
2n® oy [ a ]] (l TOG )

The error committed in the above approximation by extending the range of sum-
mation to infinity is exponentially small and therefore covered by the error terms.
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The desired result now immediately follows by use of the arithmetical functions
cgand 7. O3

The next lemma deals with the generating Dirichlet series of o (m)—z(m):

Lemma 2.11.
: a(m)—z(m) 1 [ [ 1) ( 3)]
2.19 —_— = —— Bl
219) ,,.é; m* 47 L@l 4 ‘= 4}
where {(z) is the zeta function of Riemann and {(z, a) is the zeta function of Hurwitz

(¢f. e.g. [1], [12]).

PRrOOF. First we compute

o a(m : 1 n— ’
I s 3 =L e
m=1 M m=1 m=(41.;t3)0(n+1) 4 m=(4’1;.z-13j(h+1) 4

e

The computation for 7(m) is similar and yields

s tm 1

m=1 m* N 4z

(=3 o

THEOREM 2.12. For all m=0 and n— - we have

(2.20) P [(a(m)—r(m)) erfc( 2"1/‘;” = % VE—ZIJr 0 (n=").

ProoF. By inversion of the Mellin transform of erfc(x) we get

1 1 %=1 _rz+1 v
2q = . -z
Q2D erfe() =5 [ Zr( 5 Jx iz, x>0, ¢=0,

c=—ieco

which can be found in [4, p. 325]. Thus (2.20) equals

1 1 F™ 1 rz+1yf m =
rél(a(m)—r(m))2—m_V_;j ;r(—z [21/;} dz.

c—fe=

The sum may be placed inside the integral, since convergence is absolutely welt
behaved (cf. [8, p. 133]) and thus the last expression equals

em g T el A )

c—iwm

Bya well-known method it can be shown that the line of integration can be shifted
to the left as far as we please if we only take the residues into account, yielding an
error of O(n~™) for all m=0. It is important to notice that, by cancellation of the
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poles of Hurwitz’ zeta functions, ¢ [z, 71] 4 [z, %] is an_ entire function! At

z=1 thereisa simple pole with residue

nr
3 B

(2.23)

At z=0 there is a simple pole with residue

1

(224 ~7

At z=—(2k+1), k€N,, the residues are zero, because

t(~eernp) -t~k 2) -
(2.25) 1

1 1
= ey | ) Buen (1)) =0

where B, (x) is the m-th Bernoulli polynomial (cf. [3, p. 49]). Summing up we get
the desired result. O

THeOREM 2.13. For m=0 and n—<,

(2.26) > (e(m)—t(m))me=™/" = —ngﬁ-l- O(n—™).

Proor. Using the well-known formula
I c+io
.27 e*=—— [ I@x%dz, x>0, ¢c>0
a similar method as in the proof of Theorem 2.12 (cf. e.g. [2]) yields the result. [
We want to summarize the results of this section in the following theorem.

THEOREM 2.14. The expected maximal deviation of a path of length n, n even, is
given by
nt 1 o
D, = = —7+0(n 2+ey forall €= 0 and n oo,

Proor. The application of Theorems 2.12and 2.13 to (2.17) yields theresult. O

3. The expected maximal span

Let ?,(z) be the generating function whose n-th coefficient gives the number
of paths of length » with maximal span =A. Such a path is shown in the following
figure.
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-

G,_,lz) G.(2)
Fig. 2

To obtain an explicit expression for ¥,(z) we proceed as follows: The minima!
value of the ordinate of a path enumerated by ¥,(z) is interpreted as the 0-level.
Considering the point P=(p, 0), where the minimal level is reached for the first
time (in a-left-to-right-sense), the desired generating function can be obtained as
the convolution of the two generating functions describing the left and the right
part: For the right part we have to count the number of nonnegative paths with
height =4. For the left part we proceed from P to the left. If p=0, the contribu-
tion is 1; otherwise the first step leads to the point (p—1,1). For the number of
the remaining paths we have to count the nonnegative paths of height =h—1.

Using the generating function G,(z) of nonnegative paths with height =h,
defined in [6], we have

THEOREM 3.1.
3.1 ¥, (2) = (1+2G,,(2)) G,(z). O
The generating functions G, (z) are given by
(14+oM(1 —g””“)
(1=o)(1 "%

where the substitution z=wv/(14v?) was used. We would like to emphasize that
(3.1) holds also for h=0, since G_,(z)=0. Substituting (3.2) in (3.1) we get

(1429 (1 ="+ (1 —o"*+2)
(1 —p}z(l +vn';+1)(! +v;|.;,2-} >

Let d,, denote the number of paths of length n and maximal span ># and s5,=

(3.2) Gy(2) =

(3.3) V() = h=o.

- Z dn,h-
h=0
THEOREM 3.2. s, is the coefficient of V" in
3.4) oA el Ui LY

(1—op®
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Proor. The generating function y,(z) of all paths with maximal span :-hvsis
: . . -l 1 1
the difference between the generating function of all paths |i.e. 5= (l—t.:]‘]

and ¥, (z). Hence

1+02 (1+1))U"+1
(o) A+ DA+ "

(3.5) u(2) =2

By Cauchy’s integral formula we obtain

(0

d n1 G 4z
Sy = h;(,) du,h - Zﬁf F{,—Xh(z) =

=0

1 de (l+v)3(l+f)2)"j,[ L ]=
—ﬁ U"+1 (!—0)2 h=0 [‘I‘D’H-s 1+Dn+l

__l_(‘]*) dv 2(l—i-v)z(l-i-vz)" v
T 2mi e (1—v)? 1+v~

which immediately leads to the desired result. [J

Taeorem 3.3.
Sgy =2 [(4n+ 1) (2””‘ 1]— 22"—1] ,

spe =32 [4(271+ 1) (2";1]—22"] .

Proor. This can be obtained by (3.4) using the following identities (cf. [11, p.
34D:

n( 2n ] 2n—1 n(on+1
— 22n—1+( )’ [ =22n’
ké; n—k n kg(; n—k |

L 2n 2n—1 z (2n+1 2n—1
ké; n—k n kg; “\n—k ( W
THEOREM 3.4, The expected maximal span of a path of length n is given by

I/ «i_n —14+0(n-1%), n — oo,

Proor. Since the expected maximal span is 2~"s,, we obtain the result by
Theorem 3.3 and Stirling’s formula. [
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4. The expected onesided height

Let W,;.:(z) be the generating function whose n-th coefficient corresponds
to all paths with —k=g,=h for 0=i=n, q,=0 and aq,=!; ¥,(z) corresponds

to all paths with 4;=h and q,=0.

. (n.0)
0 1‘"

'

Fig. 3
THEOREM 4.1. With z=v/(1+v?),
1+0?
@.n P, (2) = — (1—p*+2),

Proor. By a similar argument as in the proof of Theorem 2.1, we find that
4y (D) -1 (2)
a5 (2)

with the determinants ;(z) of Theorem 2.1. Hence

4.2) Pii0(2) =

l_u‘&k+8
T_—um~

I 4v®
1 —v*

4.3) Wy 150(2) = [1— 2+

Since ‘I’,,(z):kl_i_m T,,,,‘;_o(z) we have the result for small values of » (and thus

small values of z) and by continuvation for all values of z in the circle of convergence
of Wh (Z). ]

Let s, denote the sum of heights of all paths of length 2n.
THEOREM 4.2.

@.4) 5= 22"*1—[2" . 1] :

n

PrOOF. Let D(z)=(1—4z8)12= 3 (Znn ) z? Dbe the generating function of

n=0
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all paths of length 2n. Then, as usual, s, is the coefficient of z*" in

hgo (D@-¥,(2) =

I+v* 140? - ] 1402 140°
— g T 1— +2y] = 2h+2 _ .2 .
@.3) _,é(; 1—o® 1—02( o 1—u2;,§10 v (1—v%?
1 G dz ket LY dv (L
= Zmid Tl (1—v®* ~ 2mi Pl 1y
Hence s, is the coefficient of #" in
u(l+ u)™
1—u °
which is
2n
4.6 :
( ) 151(”-/1] -

COROLLARY 4.3. The expected onesided height of a path of length 2n is given by

@.n %Vn—n—%—l—O(n—”Z) for n oo,

L 2n) !
Proor. Apply Stirling’s approximation formula to [ : ) s, O

5. Concluding remarks

We would like to mention that Theorem 2.14 also holds true for » odd. This
could be shown by additionally considering the case » odd in the derivation of
Theorem 2.14. But it suffices for our purposes to observe that the expected maximal
deviation is a strictly increasing function of path length. Now — since the difference
Dy, +5—Ds, is of order O (n~1/2) — the validity of Theorem 2.14 for all » immedi-
ately follows.

Distinguishing the three components of the approximation error dealt with
in the proof of Theorem 2.9, a good balance of their order was achieved by taking
the correction terms into account in Theorem 2.9 (ii) and (iii). By that means we
were able to lower the order of the error term in Theorem 2.14 from O(»f) to
O(n~V%+%} and thereby the absolute term could be preserved. In principle better
approximations could be obtained by use of Euler’s summation formula. However,
it can be seen from the following table that the asymptotic formulae derived in
Section 2 show an accuracy meeting most practical requirements even for small ».

Furthermore, a peint of some methodical interest should be emphasized:
Though the three problems treated in Sections 2 to 4 seem to be very akin, in the
study of their asymptotic behaviour different methods had to be used.

In Section 3 and 4 the exact formulae were reduced to a relatively simple form
by the use of some combinatorial identities. To derive the corresponding asymp-
totic formulae essentially Stirling’s formula had to be applied.

'L
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D, exactly asymptotically

" (Theorem 2.8) (Theorem 2.14)
10 3.53 3.46
20 5.15 5.11
30 6.40 6.36
40 7.46 7.43
50 . 8.39 8.36
60 9.24 9.21
70 10.01 9.99
80 10.73 10.71
20 11.41 11.39
100 12.05 12.03

For the study of the asymptotic behaviour of the expected maximal deviation
treated in Section 2, the so-called I'-function method, used e.g. in [2], had to be modi-
fied : instead of the exponential function the complement of the error function was
used. In addition to Riemann’s zeta-function also Hurwitz® zeta-function came
into play.
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